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M E T H O D  O F  I N T E G R A L  C R O S S  S E C T I O N S  I N  H E A T  
C O N D U C T I O N  P R O B L E M S  

V. V. Novikov and O. B. Papkovskaya UDC 518.12:536.19 

We substantiate estimates of the upper and lower bounds of the effective thermal conductivity of piecewise 
homogeneous bodies. A numerical scheme for calculating the temperature field has been developed and 
implemented, and a comparison between the results of calculations by different schemes has been carried 

out. 

Introduction. At the present time a number of methods are available that permit one to investigate various 
physical properties of composite materials with a complex form of inclusion [1-3 ]: however, each method has its 

advantages and disadvantages. For example, use of the method of averaging is hampered by the complexities of 
the asymptotic solution and the means of constructing it [2, p. 21 ]. At the same time, the available methods are 
universal, provide possibilities for a unified approach to a number of seemingly diverse problems, and permit one 

to take into account end offects and the geometry of the inhomogeneities. 

The present article is devoted to a further investigation of the method of integral cross sections, which is 

simple to implement and makes it possible not only to calculate the effective characteristics of composites but also 

to calculate the local temperature and mechanical fields by taking into account the shape of the inclusion and the 

properties of the interaction between the matrix and the inclusion of a microinhomogeneous material. 

The method of cross sections was used for the first time by Rayleigh for determining the effective 

conductivity 2 [4 ], and subsequently it was developed in [5-8, etc. ]. The estimates of the upper and lower bounds 
of 2 obtained in those works were substantiated by proceeding from general physical considerations rather than 

rigorously. Therefore, we shall first obtain estimates of the upper and lower bounds of 2 by means of the method 

of integral cross sections, and then we shall give basic results obtained within the framework of this approach. 

In [8-13 ] estimates of the upper and lower bounds of 2 are given that were obtained on the basis of 
variational methods. For this purpose, the authors of [9 ] invoked the principle of minimum entropy production: 

dS 
- - ~ = -  f f f dV>_O. (1) 

(I'3 

According to Eq. (1), the integral (the dissipation of energy during passage of the heat flux q) 

J = ~V f f f q (r) Vt (r) dx 1 dx 2 dx 3 (2) 
(1,3 

subject to the additional condition 

div (q (r)) = 0 (3) 

is stationary and takes a minimum value (c~J = O) on the class of admissible functions q(r), Vt(r) that satisfy the 

equations 

div (;l (r) Vt (r)) = O, q (r) = - ;l (r) Vt (r).  (4) 

For convenience in further formulations we shall introduce the operators of averaging over the coordinates: 

1 L 1 {f(r)}L=Z f f(r) dx k, {f(r)}s=~ ff f(r) dxidx ]. 
0 (s) 
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Fig. 1. Structure of a microinhomogeneous material: a) representative volume; 

b) differential volumetric element (DVE) in the form of a prism; c) DVE in 
the form of a layer. 

In this case, the following equalities are satisfied: 

{{f(r)}s }: = { { :" (r) }L }s=<f(r)) �9 

Estimates of Upper and Lower Bounds. Hill proved [14] that for a quasihomogeneous body the following 
equality holds: 

( q (r) Vt (r))  -- ( q ) ( Vt ),  (5) 

where (q) = -2  (V 0. 

Theorem. If c~ f f f 2(r)(Vt)(r) 2dV= 0 on the class of admissible functions q(r), Vt(r) satisfying the equations 
(TO 

div (2 (r)Vt(r)) = 0, q(r) = -)l(r)Vt(r) and (q(r)Vt(r)) = (q) (V0, then 

Proof. On the basis of Eqs. (2)-(4) we conclude that any other choice of the pair of functions q'(r), Vt(r) 

or q(r), Vt'(r) from the class of admissible functions that satisfy the boundary conditions, just like the true functions 
q(r), Vt(r), gives a value of J '  such that the following condition holds: 

where 

o r  

t j ~ j ,  (7) 

J' = -  ( q ' V t ) ,  ( q ' )  = - 2 ' ( V t ) ,  

J '  = - ( q V t ' ) ,  ( V t ' ) =  - p ( q ) .  

Here 2' and p'  are quantities that determine the effective properties of fictitious bodies (bodies of comparison) that 

are characterized by the pairs of functions q'(r), Vt(r) and q(r), Vt'(r), respectively. 
We present two techniques for selecting the trial functions q'(r) and Vt'(r) that permit one to find the upper 

and lower bounds for the effective thermal conductivity of microinhomogeneous materials. The estimates of the 
upper and lower bounds obtained by means of the method of integral cross sections are based on two techniques 
of arbitraty division of a representative volume V. In one case it (Fig. la) is divided in the chosen direction (along 
the external field), for example, along the Oxa axis, into prisms with area of the base dxl xdx2 and height L (Fig. 
lb), and in the other case - into layers of thickness dxa with area of the base L• (Fig. lc). 

Let us prove the right-hand side of inequality (6). We represent the expression for the flux <q> in the form 

( q ) = - {  ( { 2 ( r )  Vt (r) }s ) }L" (8) 
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we now select the trial functions q'(r), Vt(r) in such a way that the following condition is satisfied: 

{ q' (r) }s = q')- (9) 

The term inside the round brackets in Eq. (8) determines the mean flux q over the cross section of the specimen; 
subject to condition (9) it can be determined in the form 

Here {,t}s = ~l~St(xa) + ,12S2(xa) is the conductivity of a layer of thickness dx3; S is the cross-sectional area of the 
generalized representative element (GRE) perpendicular to the Ox3 axis; Sl(x3) is the cross-sectional area of the 
specimen perpendicular to the Ox3 axis and occupied by the l-th component (l-- 1, 2): 

S = S 1 (X3) + S 2 (X3)" , SZ (X3) -- Sl (X3)/S " 

From Eq. (10) it follows that 

Taking into account the fact that - (q)  (Vt) _< - (q ' )  (Vt), we obtain an upper bound for Jl: 

)I___{{)I}sl}L 1. (11) 

Now, in order to prove the left-hand side of inequality (6), we represent (Vt) in the form 

( V t ) =  { ({  Vt ( r )}L)  )S" (12) 

We select the trial functions Vt'(r), q(r) in such a way that the following relation is satisfied: 

{Vt' (r) }r = ( V t ' ) .  (13) 

With account for Eq. (13) the integral within the round brackets in Eq. (12) can be represented in the form 

{ Vt' (r)}L = -- { 't-1 }L {q (r)}L' (14) 

where {A-1}L is the resistance of a prism of height L with area of the base dxldx2. In this case 

{)l-1 }L = Zl (X,, X2),~71 + L2(X1, X2)~21. 

Here Ll(Xl, x2) is the length of the straight line that is parallel to the Ox3 axis and passes along the/- th  component 
(l = 1, 2); Ll(x l, x2) = Ll(xl, x2)/L is the length of the GRE along the Ox3 axis. 

From Eq. (14) we obtain 

(q )  = __ { {,~-1 }~1 }S (V t ' ) .  

Thus 

Taking into account Eq. (15) and the fact that 

J = 1 / 2 ( q ) ( V t ) =  - 1/2,l -1 ( q ) 2 ,  (16) 

according to Eq. (7), for the effective conductivity 2 of the microinhomogeneous material we can write 
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Fig. 2. Plane network of randomly distributed resistances: a) initial; b) 

subject to condition (10); c) subject to condition (14). 

Combining Eqs. (11) and (17), we obtain bounds of possible values for the effective conductivity in the form 

{{~--a}L1 } S < ~ <  {{) I .}s l}L 1 , 

which was to be proved. 

In [2 ] it was concluded that in the case of equal volumetric fractions of the inclusion and the matrix the 

effective coefficient of thermal conductivity differs from the mean arithmetic and the mean harmonic coefficients 

of the inclusion and the matrix; moreover, the greater the difference between the thermal conductivity coefficient 

of the inclusion and that of the matrix, the greater the difference between the effective coefficient of thermal 

conductivity and the indicated mean values. In our case we have proved the theorem about an accurate estimation 

of the boundaries of the change in the effective coefficient of thermal conductivity. 

Inequality (6) is equivalent to the following well-known rule: the true value of the effective conductivity 2 

is higher than the conductivity obtained in the case of an "adiabatic" cross section and lower than that obtained in 

the case of an "isothermal" cross section of a piecewise composite body. 

To illustrate the physical meaning of assumptions (10) and (14), let us consider the plane network of two 

types of randomly distributed resistances depicted in Fig. 2. To estimate the upper bound of the effective resistance 

of such a network, we assume that all of the transverse connections are broken (Fig. 2b). This is equivalent to 

assumption (10). It is clear that such an assumption should lead to an overestimation of the effective resistance 

(lowering of the conductivity), since the finite resistances were replaced by infinite ones (discontinuities), i.e., the 

new network of resistances will have a lower conductivity than the initial one. To estimate the lower bound, we will 

assume that all of the transverse resistances are equal to zero (Fig. 2c) ; this is equivalent to assumption (14). With 

such a replacement the effective resistance will be underestimated compared to the resistance of the initial network, 

and the conductivity will be correspondingly overestimated. 

The method of cross sections in one form or another was used by many authors to determine the effective 

conductivity [4-8 ]. We will present some of the results without giving derivations. For an elementary cell of a sphere 

in a cube, using Eq. (6), we can represent the lower and uppe r bounds as follows: 

the lower bound 

;tlow = ~2 + ( I" -  '12) x 2 ,  

1/3 2/3 
~2 = ~ (3~1/4) , 

~ -  ( a -  1)~1 1 ( a -  1)~1 
In [ ( a -  l) Jr 1 + I ] } ,  

Jr I = 2 (3~ol/4zr) 1/a , 
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where a = 22/21, 22 and 21 are the conductivity of the matrix and the inclusion, respectively; 7'1 is the volumetric 

concentration of the inclusion: 7'1 -- V1/V,  V1 is the volume of the inclusion, V is the volume of the matrix; 

the upper bound 

1 - ar 1 arl ) -1  

2up=  ~ +  c~.s ' 

2c. s = 2 2 (1 - a -1)  g2 [Jp (1) 1-1 , P = 1 + 

1up ( 0  = 

(1 - a) ar 2 

1 z - x / -b  
I n - -  b > O ,  

z + 4 - 6 '  
1 z 

arctan - -  b < 0 .  

For an elementary cell of a cube in a cube the lower and upper bounds have the form [4 ] 

21o w = 2 2 

2/3~ 1/3 
21 -- (Jl 1 -- ~t2) (1 -- 7'1 ) 7'1 

1/3 
2 1 - 7 " i  ( 2 1 - 2 2 )  

(18a) 

"]'2 + (~1 . 2/3 -- ~2) 7'1 (18b) 
;lup = Jl 2 2/3 (1 1/3, " 

22 + (21 -- 22) 7"1 -- 7'1 ) 

Thus, the sequence for determining the lower bound for the effective properties of the conductivity of a 

microinhomogeneous material  is as follows: first, the piecewise homogeneous body is split into differential  

volumetric elements in the form of prisms, and averaging of the properties along the chosen direction (along the 

external field) is done, and then (finally) averaging is done over the cross section perpendicular to the chosen 

direction (perpendicular to the external field). The upper bound for the effective properties of the conductivity is 

determined in a different sequence: first the averaging is done over the cross section perpendicular to the chosen 

direction and only then along the chosen direction. Obviously, a combined method can be used. In this case the 

piecewise homogeneous body is arbitrarily divided into two regions: in One of these the determination of the effective 

properties is made using the formulas for the lower bound, and in the other - using the formulas for the upper 

bound. Then,  performing the averaging of the properties over these two regions, we obtain formulas for the effective 

properties of the whole piecewise homogeneous body, a calculation by means of which gives values lying within the 

bounds of the possible values obtained from Eq. (6). 

Numerical Scheme of Calculation. We will consider the construction of a finite-difference scheme by means 

of the method of integral cross sections concerning the calculation of the temperature field in the following problem: 

L l u = d i v ( 2 1 V u  1 (r)) = 0 ,  if r E D  I ,  (19) 

L u = d i v 2 ( r )  Vu(r ) )  = L 2 u = d i v ( 2 2 V u  2(r))  = 0 ,  if r ~ D 2 ,  

where u is the potential in the region D = D1 LID2. A t  the phase interface B = D1 N D 2 the following conditions are 

fulfilled: 

q i = - 2 z V u / ,  i =  1,  2 .  

Here n is the unit normal vector to B, qi = -;tiVui, i = 1, 2. 
We will construct the finite-difference scheme for Lu = 0 in the following way. By means of the planes xi 

= kh (k = 1, 2 . . . . .  n) we construct a rectangular grid Bn that splits the region D into ( n - l )  a cubes (a is the 

dimensionality of the region D). There  will be three types of cubes: 

1) consisting only of component 1, i.e., having the volume Vlk < D1 (conductivity 2~ln)); 

2) consisting only of component 2, i.e., having the volume V2i < D2 (conductivity 2~2n)); 
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Fig. 3. Effective thermal conductivity of an elementary cell of a cube in a cube: 

1) calculation by formula (18b); 2) numerical calculation; 3) calculation by 

formula (18a). 

3) consisting of components 1 and 2, i.e., having the volume V3k > B (conductivity ;t~)). 

Then, we replace each cube by a node (the node is located at the center of the cube) with six connections 

that are determined by the conductivities of the cube in three directions. 

The conductivity of connections between neighboring nodes that belong to different types of cubes is 

determined as the harmonic mean of the conductivities of these cubes in the given direction. For example, the 

conductivity of the connection (l, l+ 1) is equal to 

= , i = 1 , 2 .  

Here, )l~0 and 2t3+)1 are the conductivities of the cubes in the l-th direction whose cemers are located at the nodes 

Mlm n and Ml+1,m, n. In this case 2 ~  ) is determined by means of the method of integral cross sections. 

The boundary conditions and the conditions of the interaction of the matrix with the inclusion are taken 

into account by selecting the properties (in a given case, the conductivity) of the connections between neighboring 

nodes of the computational scheme. The conductivity of a connection can both take a specific value and be 

determined as a function of a certain coefficient of interaction, for example, the coefficient of resistance between 

the matrix and the inclusion. 

As a result of such a construction, we obtain a new grid B n' whose nodes Mlmn are joined by three types 

of connections. The approximation of the derivatives u(r) in Eq. (19) takes the form 

- 2 l ' /+1  (u  ( l  + 1 m n)  - u ( l  m ,  n ) )  
h , , , , 

Ou (r) ] 1 [,(n,m) 
OXl ) =--2h 2 [~l+I,1 u ( l +  1, m ,  n ) -  

Ou (r) 
2 (r) Oxl 

0 (2 (r) 
0x 1 

r~ (n,m) ~(n,m)~ . (n,m) ] 
--tnl, l-1 + nl+l,l] u ( l ,  m ,  n ) + X l ,  l_ 1 u ( l -  1, m,  n) . 

J 

The remaining terms in Eq. (19) are determined in a similar fashion: 

Ox2~ 2 (r) ox2 ) and T~xa ~(r) Oxa 

21o w < 2el < )!.up, 

The difference scheme used is very efficient, since it has a three-diagonal matrix. 

The finite-difference approximation considered has been implemented on a computer. The calculation of 
one version on an ES-1066 computer takes 3 0 - 4 0  sec. Without limiting the generality, the method of integral cross 
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Fig. 4. Dependence of the relative temperature T / A T  on the coordinates z 

and y (m): a) thermal conductivity of the matrix 22 = 1 W/ (m-  deg), thermal 

conductivity of the inclusion 21 -- 100 W / ( m .  deg); b) k2 -- 100 W / (m .  deg), 

21 = 1 W / ( m .  deg); AT (deg) is the absolute difference of temperatures be- 

tween the faces of the cube z = 0 and z = h (h -- 1.8 m); 1) calculation by the 

finite-element method; 2) calculation by the method of integral cross sections; 

3) a quasihomogeneous medium with 2el -- (1/2) (21o w + 2up). 

sections permits the solution of the problem for any form of the inclusion with smooth boundaries. This permits 

one to carry out the integration in formula (6), which gives estimates of the upper and lower bounds of the effective 

coefficient of thermal conductivity. Thus,  the method of integral cross sections makes it possible to circumvent the 

difficulties in describing the boundary between the various structures of composite materials and can be introduced 

efficaciously into engineering and other calculations. 

As a model structure for determining the effective thermal conductivity we selected an elementary cell a 

cube in a cube with a ratio of the linear dimensions of 1.8/1 and boundary conditions of the first kind. 

Results of Calculation. Using the results of a numerical calculation by the proposed scheme we determined 

the effective thermal conductivity 2el of an elementary cell of a cube in a cube (Fig. 3). From a comparison it is 

seen that 2ef takes values located between the lower and upper bounds of the thermal conductivity coefficient: 

21o w < 2ef < 2up, where 2low and 2up were calculated using formulas (18). 

Graphs of the dependence of T / A T  on the coordinates z and y for 21 = 100, 22 = 1 and for 21 -- 1, 22 = 100 

are presented in Fig. 4. It should be noted that, owing to symmetry,  the dependence of T / A T  on x is completely 

equivalent to the dependence of T / A T  on y. 

A comparison of the obtained results with calculations by the finite-element method showed good agreement 

between them. In Fig. 4 curves 3 differ substantially from curves 1 and 2. This indicates that in calculating the 

temperature field of a piecewise homogeneous body, its replacement by a quasihomogeneous medium with the 

effective thermal conductivity 2el = (1/2) (2low + 2up) leads to a substantial error. 
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Conclusions. Estimates of the upper and lower bounds for the effective thermal conductivity of piecewise 
homogeneous bodies have been substantiated. A numerical method for calculating the temperature fields in 
piecewise homogeneous bodies has been developed and implemented that agrees well with the finite-element method 

and is simple in implementation. 

N O T A T I O N  

S, area; T, time; V, volume; t, T, temperature; q, vector of the heat flux density; 2, effective generalized 

conductivity; r, radius vector; V, gradient; div, divergence; p, density of a substance; L, length; AT, temperature 

drop. Subscripts: low, lower; up, upper; ef, effective. 
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